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The importance of the long-range Lifshitz—van der Waals interaction energy between condensed bodies is
well known. However, its implementation for interacting bodies that are highly irregular and separated by
distances varying from contact to micrometers has received little attention. As part of a study of collisions of
irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been
developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations.
In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical
molecular clusters are compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum
spheres of radii equal to those of the clusters’ circumscribed spheres and of the same masses as the clusters.
The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters
for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not.
Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in
different relative positions are calculated first by coupling all molecules in the three-cluster system and second
by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this
omission is shown to be very small, and is an indication of the error in computing the long-range interaction
energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies
between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the
short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide
an integrated picture of the van der Waals energy from large separations to dBt86:3-651X98)14309-X|

PACS numbes): 61.46+w, 73.23.Ad, 34.20-b, 82.70-y

[. INTRODUCTION particles formed in colloidal and in gas-phase processes, are
geometrically asymmetrical and highly irregul@tl1,12.

The van der Waal§VDW) forces are universal, in the Calculations of the many-body VDW energy between bodies
sense that they act between all atoms and molecules as wéi@ving irregular geometry, from large separations to contact,
as condensed bodi¢g]. The origins of these forces are the to our knowledge, have never been made. The purpose of
instantaneous charge fluctuations in individual atoms anéhis study is to develop a method for the calculation of this
molecules as well as in condensed media. They play roles i{DW energy between a nanometer-range spherical particle
numerous important physical, chemical, and biological phe@Nd an aggregate comprised of similarly sized primary par-
nomena. Examples include, but are not limited to, particlet!des from distant initial separation to contact. Such calcula-

aggregation in the gas phase, adhesion, physical adsorptio%ons are useful in molecular dynamic trajectory simulations
wetting, and flocculation of pa{rticles in Ii,quids of particle aggregation, in which the force derived from the

Calculations of the VDW energy between condensed bodi_nteraction energy and the initial conditions play an impor-

ies have been made by Bradlgg], Hamaker[3], Lifshitz tant role.

. . This paper is structured as follows: In Sec. Il, we present
[4], Langbein[S], and othergsee Ref[6] for a list of other . the interaction energy calculations for two spherical particles

authors. The approaches can be broadly classified as bemgbr large and near-contact separations and develop an analy-
two body and many body. The two-body approact®s] g of the dependences at different distances, which permits a
obtain the interaction energy by a pairwise summation of th‘?)arametrization of the interaction energy over all separa-
direct intermolecular interactiorig—9]. The many-body ap-  tjons. In Sec. IIl, we extend the above calculations to com-
proacheg4,5,10, on the other hand, include both the direct plex particles comprised of several spherical particles and
interactions and the induction correlations of moleculesind a simple means of calculating the many-body VDW
within each condensed body and between the two interactingnergy, which is readily applicable to clustered particles of
condensed bodies. All calculations based on many-body aarbitrary shapes. Finally, in Sec. IV we present the conclu-
proaches thus far have been made for geometrically simplsions.
systems. However, many realistic bodies, such as aggregated
1. INTERACTION ENERGY CALCULATIONS:
SPHERICAL PARTICLES

*Present address: Motorola Inc., 3501 Ed Bluestein Blvd., MD-
K10, Austin, TX 78721.

"Present address: Physics Department, Texas A&M University, Several approaches are available in the literature for the
College Station, TX 77843-4242. calculation of the VDW energy between spherical particles.

A. Continuum matter
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The Hamaker approach calculates the VDW interaction enwhereT is the temperaturesa(i £) andeg(i &) are the dielec-
ergy between two spherical particles assuming simple pairtric constants of bodied andB on the imaginary frequency
wise addition of corresponding intermolecular energies. Foaxis, andk is Boltzmann’s constant. For interacting half-
the case of two spherical particles of raglib and molecular ~ spaces, replacement &!; by Al exactly expresses the
number densitiess, ng whose center-of-mass separation isnonretarded Lifshitz theory results while for spherash
R, the result of the summation is provides a lower bound of the magnitude of the VDW en-
H ergy[14] when used in Eq(1). Although the replacement of
B A 2ab . 2ab Eq. (2) by Eq. (4) is helpful in accounting for the collective
AB 6 |R°—(a+b)> R?—(a—b)? intermolecular interactions characterizing condensed matter
RZ—(a+b)? in the continuum limit, it does not indicate the manner in
n{ 5 5 } (1) which the summed discrete interactions approach the con-
R°—(a—b) densed matter interaction energy with increasing numbers of
molecules. Nevertheless, the Lifshitz-Hamaker approach has
where the constarfth is called the Hamaker constant and is often been used in the literature. The assumption that it pro-

defined as vides an adequate approximation for spheres has not been
adequately quantified and will be examined as part of this
Alls=m2nngCs. (2)  study.
Langbein[15] developed an alternative, “molecular” ap-
In Eq. (2), Cg is given by proach to describe the interaction energy of continuous bod-

ies by adapting Bade'sl8] perturbation theory computation
3 [+ of the collective dispersion energy among discrete mol-
C6=2— J ap(ié)ag(ié)dé, €)) ecules. By regrouping terms and using the standard Clausius-
T J o Mossotti relation to express the dielectric constant in terms
of the molecular density and polarizability, Langbdib]
where a(i§) denotes thescalay frequency-dependent mo- derived” the nonretarded version of the Lifshitz interaction
lecular polarizability taken on the imaginary axis for COmpuU-energy between half-spaces. This same approach was then
tational convenience antl is Planck’s constant. While the utilized by Langbe|r{14] to derive a SlOle Convergent se-
Hamaker potential is mathematically simple, it suffers fromries solution for the interaction energy of two continuum
two general defects(l) it does not take into account the spheres. This slow-convergence difficulty can be overcome
collective effects that are Operative in condensed matter, al using an accurate mathematical approximation to Lang_
(2) the interaction energy diverges upon contact rather thaRein’s exact expression for the Lifshitz energy. The approxi-
converging to a finite value. mation was developed by Keifer, Parsegian, and Weiss
The Lifshitz theory of the van der Waals interaction, onkpw) [16], who showed it to have better than 2% accuracy.

the other hand, is based on a continuum approach in that #their nonretarded interaction energy for continuum bodies
calculates the interaction energy without direct reference t@an be expressed as

the molecular structure of the particles. The interaction en-

ergy is due to the perturbation of the free electromagnetic P KT

field caused by the introduction of the two bodies into free E(2)==— g(¢£,2dé— — g(0,2), (5)
spacd4,13]. This approach has full generality, is applicable 2 JomkTin 2

to any body at any temperature, and has the correct behavior

in the limiting case of rarefied medi&e., giving the inter-  wherezis the distance between the centers of the interacting
molecular energy However, analytical expressions for the spheres, and is the frequency. The functiog(¢,z) [16] is
interaction energies can be obtained from Lifshitz theoryan infinite sum over terms involvingandz, some of which
only for certain regular interactant geometries. Solutions ar@re themselves infinite sums. The calculatiorg¢§,z) can
available for interacting half-spacg4], sphere§14], films,  be accelerated by using a rapid summation technique that

layers, and plangd.5], and a sphere with a plaf#6]. More-  uses a nonlinear transformation developed by AitKEg).
over, being a continuum approach, it can only be used for

distance scales greater than the molecular dimensions.
The Lifshitz-Hamaker approacfi,5,17 is a hybrid in
that it assumes thgeometricaldependence of pairwise ad-  The work of Langbein summarized above suggé¢2t§
dition of the intermolecular interaction similar to the Ha- an approach to the calculation of the VDW energy between
maker approach, while incorporating the collective effectsmolecular clusters that is consistddf7] with all levels of
through an alternative form of the Hamaker constant. Fomolecular aggregation from London—van der Waals interac-
interacting half-spaceA and B separated by a vacuum, the tion of a pair of molecules to the continuum Lifshitz theory.
Lifshitz-Hamaker(LH) constant is expressed as Considering each molecule as a discrete oscillator, the total
energy may be showfl6,15 to be expressed as

B. Discrete clusters

LHNE 8A(0)_l 85(0)_1 h -

Aae™ g KT 50+ 1) [op(0)+ 1 (AErs)ou=g 2 f_xdiln{deil—a(if)T]}. ®)
Sh o SA(|§)_1 SB(|§)_1
87 Jomen oa0 0+ 1) 5600+ 1% @ Where
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- - -~ Lifshitz-Hamaker
Lifshitz

aN 0 50
o o) "

a(i§)=<

is the polarizability matrix for the system ards the N,

X 3Ng identity matrix with Ny the number of molecules in
cluster X. Each major submatrix@® is diagonal in the
3X 3 polarizability tensors, each of which corresponds to a
distinct molecule in clusteX. The dipolar coupling tensor

for the system is comprised of elemeftg=—V;V;[ 1/(r; B
—rj)] and 10

10

Relative Error (%)

TA  T0©)
T= T(C) T(B) , (8) -30 T T T T T T T T : T

0 2 4 6 8 10 12
where the indices are such tHEt" couples only molecules @) (Center of Mass Separation (red. units)

within A, T(® couples only molecules withiB, and T(©) 50
couples the molecules in the separate clusters. The cluster
interaction energ\AE g is given as the difference between

the energy of the fully coupled clusters and the sum of the 30
individual cluster self-energies in isolation of each other,,
Eq. (6) with T(© set to Q,

-~ =« Lifshitz-Hamaker
Lifshitz

AEAg=(AEAB) tota— (AEA+AEp). 9

Relative Error (%)
s
|

The energy as represented by E9).is the basis for com-
puting the “discrete” long-range cluster interaction energies |  Tv--.___
in this paper. While it is a relatively crude representation for i T
general intracluster properties, for intercluster attraction it
should be realistic, provided no collective states such as con- 30 T
duction bands form within the clusters. Amadon and Marlow 0 g 4 , 6 ' $ 10
[17] calculated the VDW interaction energy between mo- () (Center of Mass Separation (red. units)
lecular clusters using this formulation of the iterated van der 50
Waals interaction energy over discrete molecules. The pro-
totype clusters used in their calculations were carbon tetra-
chloride (CC}) molecular clusters comprised of 13 and 55
molecules in icosahedral and 33 molecules in dodecahedral
configurations. Through the use of a repulsive component to <
the VDW energy that varied as 24, wherer is the separa-
tion between the molecules, they define a molecular “diam-
eter” (o). The “contact energy” in their calculation there- 1
fore corresponds to a separation between ‘“point 1o '
molecules.” The interaction energy calculations require Tl
large amounts of computer time even for calculations involv- i T
ing small molecular clusters.

- - - - Lifshitz-Hamaker
——— Lifshitz

10

Relative Error

-30 T T T T ‘ T T
_ 0 2 4 6 8 10 12
C. Comparison (c) Center of Mass Separation (red. units)
First, the interaction energy is computed using the dis- L I .
crete approachEq. (9)] and is labelecEp . The molecular F_IG. 1. The errors in Llfshltz-Hama_\ker and Lifshitz energies
. . relative to the discrete energy for a pair @ 13-molecule icosa-
clusters are then replaced by spherical particles of the same
di dii d dielectri i th edral CCJ clusters,(b) 33-molecule dodecahedral CGilusters,
malss, T:Orrelspon mg (rja g’ an 1|7e ec ”g F;]mperr] 'e_s as gnd (c) 55-molecule icosahedral CCtlusters. The center-of-mass
mo'ecu arc l,JSterS,C'te a Q\ésge[ 1), and then the inter- separation . ,,) is in units of the average cluster diametel,j,
action energies using the L|fsh|tz-Hamqker appran-:M[,_ which is 1.558 nm, 2.259 nm, and 2.544 nm fay, (b), and (c),
Egs. (1)—(4), and the KPW approximation for the Lifshitz egpectively.
energy €.i), EQ.(5), are determined. Figurega—1(c) are
graphs of the relative difference & or E  andEp ver-  erage diameter for the discrete cludté¥]. The graphs indi-
sus scaled separation for pairs of 13-, 33-, and 55-moleculeate that for large surface-to-surface separations of the par-
CCl, clusters, respectively. The solid lines correspond taicles, E,; converges toEp within the accuracy of the
(ELif—Ep)/Ep versusd, ,/d,, and the dashed lines corre- approximation used to computg ;, while E,,; underesti-
spond to €, 4—Ep)/Ep versusd, ,,/d,,, whered. ,, isthe  mates the exact enerdyp by 10-15%. For small separa-
center-of-mass separation of the particles dgglis the av-  tions, both approximations overestimate the attractive inter-
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action energy, a typical result for the macroscopicof the condensed bodies involved. In other words, at small
interaction. Although the Amadon and Marlow approachseparations, the many-body effects modify only the interac-
avoids the problem of singularity of the interaction energytion constant, while leaving the functional dependence of the
upon contact through the use of a repulsive component to thiateraction potential on the separation distance unchanged. It
VDW energy between the molecules, it still assumes that théollows, therefore, that if a two-body potential is obtained,
molecules are point particles. Another disadvantage of thishe corresponding nonretarded many-body potential at small
approach is that the interaction energy calculations are conseparation can be obtained by simply replacing the two-body
putationally intensive and are, therefore, impractical for dedinteraction constan(Hamaker constaptby the many-body
termining interactions between larger particles. interaction constanfHamaker-Lifshitz constajt which is

A new and computationally feasible calculation of the in-defined, to a first approximation, by
teraction energy for ultrafine particles at short-range separa- .
tion to contact(where the above calculations falas been kT < [e(i&) —eo(i&n)]?
developed by Lu, Marlow, and Arunachald@i], hereafter C= 4 &y le(iéy)teoliéy)]
referred to as the LMA approach. The calculations show that
at, or near, contact, the molecular size effects are importawhere ¢,=2nwkT/A (n=0,1,...), (i), and gy(i¢) are
and must be taken into consideration. The contact energidsequency-dependent dielectric constants evaluated at imagi-
calculated using this method are finite as opposed to theary frequencies for the condensed body and the surrounding
infinite values obtained with methods that consider the molimedium, respectively. The prime on the sum indicates that
ecules to be point particles. As the surface-to-surface sepshe n=0 term is weighted bys. The k represents Boltz-
ration between the particles increases, molecular size effectaann’s constant, and is the ambient temperature. In addi-
become decreasingly important, and the short-range enerdipon to the small separation requirement, Langbein also
converges smoothly to the continuum energy calculated usspecified[15] that the change in dielectric constant with re-
ing the Lifshitz approach. Let us now examine the domainspect to distance should be small near the surface. This sec-
within which each of the above approaches are valid, as welbnd proviso is unnecessary for our calculations because we
as the convergence criterion. We will then present a paramhave incorporated the effects of molecular size into our con-
etrized representation of the interaction energy over all sepasiderations to give a finite contact energy. In contrast, Lang-
rations. This simple, yet accurate, representation is easilpein assumed the dielectric constant to be a function of sepa-
programmable and will be particularly beneficial to dynamicration such that a finite contact energy can be obtained with
simulations of particle aggregation where considerable time¢he singular potential; consequently, the dielectric constant

(10

is spent on the evaluation of interparticle forces. must be a smooth function of separation near the surface for
The rationale behind the LMA approach is based onhis energy calculations.
Langbein’s observatiofl5] that the two-body potential be- Based upon the above argument and taking into account

tween condensed bodies has the same dependence on the finite molecular size, Lt al. [21] derived the small-
surface-to-surface separation as the many-body potentiadgparation dispersion energy between two spheres of equal
provided that this separation is small compared to the sizesadiir as

Eo Cr 4rd 2rd 2r 1-G(d ood oE ) E 2d d(d+4r)
SR 7 24 | (dr2n? T (drand+an T arar 1T G qagy Gld+ o | 2B 2Bl TN i
2r d“Ed E2d r d7F 2d 27F 2d 39F 2d "
T3d+2n la) [Pta) TR E ) | Tarer l&)ls Tl ) "6 lm ) T1e ol ||| (1)

|
whered is the surface-to-surface separation distance between l=fawyy, (13

the spheres. This formula is applicable whenever the interac-
tion between two spheres, made of the same material, is &ghere w,,,=1.7x 10 ¢ rad s for CCl,. In Eq. (11),
most entirely due to the dispersion interactions. For two
spheres made of different materials, the surfaces involved

must be low-energy ones, as discussed in detdi2if. The G(d)= Fg(% - L_l F, E + z F, @ - f Fo @
molecular sizein atomic unit$ a is determined by aj 3 “%taj 3 "a) 3 Ta
1 |\ 12 2|:d 4Fd+2Fd 4Fd
e 12 a3 %25t 3 ila) "3 FolE) |
o . (14
wherel andl are the first ionization potentials of the atom
or molecule considered and a hydrogen atom, respectively. n
In the case of condensed bodiesan be represented well by Fn(x)ze"‘z i Xi (15)

[21] i=o i!
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@7V In the limiting cases corresponding tb=0 andd—c°, by
E1(X)=J v dy. (16)  proper choice of parameters, the above equation reduces to
X the correct functional forms and gives the correct limiting
interaction energy values. By settingo1# contact energy,

Eqg. (21) can be made to give the contact energgat0. As
g, E(r)—(ap_1/bhrg)d 8. Thus, by setting
n—1/bn+6=Ci, Where C; is the Lifshitz constant, at

arge separations E¢R1) can be made to reduce to the form
of the nonretarded Lifshitz energy. The parameters used to fit
the interaction energy for Cghre presented in Table I. The

Cr ard ord parametrized interaction energy and the corresponding force
Esr=— = >+ from a center-of-mass separation ofd}0 whered, is the

2d [(d+2r)®  (d+2r)(d+4r) contact separation between the two clusters, through contact
2r 2d  d(d+4r) are presented in Figs. 2 and 3, respectively.

Tarar T Mavan?) a7

At d=0, Eg. (12) can be shown to reduce to a form that
gives a finite value for the contact energy. Whna, i.e.,
the interacting surfaces are farther apart than the molecul
dimensions, but the separation is still small in comparison t
the size of the spheres, i.@<r, the equation for the short-
range energy reduces to

Ill. INTERACTION ENERGY CALCULATIONS:
Comparing the above equation fBgg with the equation for COMPLEX PARTICLES

the Lifshitz energy{14] at comparable separations, ) .
oy 4] P P At the basis of the calculations & ; and of E for two

Cr molecular clusters and their close correspondence with each
Euf=— >q" (18)  otheris the fact that all molecules comprising the clusters are
collectively coupled to each other. For small clusters, the
“iterated-dipole” interaction energies of the clusters, i.e.,
Ep, can be calculated as described above. However, in ag-
gregation studies involving typically ultrafine particles with
ad 2rd L2 diameters of the order of several nanometers, such calcula-
(d+2r)% " (d+2r)(d+4r) d+2r tions are clearly computer time-intensive and, therefore, not
2d  (d+4r) practical. ConverselyE, ; proyides an adequat_e accounting
+—1In—>5=1. (19 of the energy between spherical particles, but in general ana-
ro(d+2r) Iytical solutions to the Lifshitz theory of van der Waals in-

) ) ) _ teraction exist only for a limited number of idealized geom-
Solving for d from the above equation, we obte}ln the dis- atries and, hence, cannat priori be expected to portray
tanced.; =0.0Tr. For surface-to-surface separations greatefccurately the interaction energies involving aggregates of
thand,;, becauseEsg converges tdE ¢, we can now say particles. However, we can ask how important the many-
that the molecular size effect is small. Whereas, forhody interactions that represent intermolecular coupling in
d<d.;, the molecular size effect must be considered, andhe aggregate are if the coupling between constituent par-
the LMA approach that incorporates this effect should bejcles in the aggregate is carried out to a sufficiently high
used to calculate the interaction energy. §2H for a deter-  orger. Specifically, if the interaction energy between a par-
mination .Of Sepal’ation distance at Wthh L|fSh|tZ theorytic|e and an aggregate could be expressed as a Simp'e sum
should fail. _ over the Lifshitz energyE, ;1) values between each constitu-

In the present calculation, the short-range component ofnt particle of the aggregate and the single particle, then a
the van der Waals energy, from contact to a surface-togomputationally tractable long-range energy would be avail-
surface separationt,;, is computed using Eq$11)—(16).  aple for aggregation calculations. Such a calculation is a pri-
KPW'’s approach is then used to obtain the interaction energihary goal of this study.
fromd,,, the smallest distance for which the Lifshitz energy  To determine if the above interaction picture is useful,
and the energy calculated using the LMA approach converggyree 55-molecule CGklusters(circumscribed sphere diam-
[21], to initial separatiord, in a collision simulation. Using  eter of 2.82 nm[17]) were arranged so that two were in
these energy values as input, we parametrized the interactigiyntact and the third was some distance away from them.
energy for all interparticle separations. The aim in develop-The completely coupled, iterated-dipole energies among the
ing this set of parameters is to provide a smooth, continuoughree clusters were computed over a range of separation dis-
function for the interaction energy that is eaSily diﬁeren'tances_ Next, On|y the energy resumng from Coup"ng the
tiable and programmable. In dynamic simulations where &jngle cluster separately to each of the contacting clusters
considerable fraction of the total CPU time is spent in the(referred to as the discrete_pairwise gum'as calculated. In
force CaICUIation, such a parametrization will allow the this manner, the effect of the Coup"ng between the mol-
forces to be calculated Slmply and efﬁCientIy by a call to Aecules of the Contacting C|uste(’soup|ing energy on the
subroutine containing the equation for the force. The paramiotal interaction energy was computed. These calculations
etrization for the nonretarded VDW interaction energy iswere performed for two extreme relative orientations of the

We can see that, fal<r, Egg—E s when

given below as contacting clusters and the isolated cluster. In the first in-
1 stance, the centers of the three clusters lie on a(linear
E(d) 1+a,d+---+a, id (20) orientation, whereas in the second instance, the contacting

- b;+b,d+---+b,sd" "> pair of clusters were rotated by 90° about their contact point
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TABLE I. The parameters used to fit the van der Waals energy A TP R PR [ NP RPN
from contact to large separations for a pair of £Cbntinuum 1021f E
spherical particles of diameter 2.544 nm. 1 r
0 F
Parameters Values E 0 : :
& E 3
a ~57.8460 5107 ;r
a, 954.8547 2 r
as —3093.6990 g 1074 r
b, —9.5677 S r
b, 4.1931 1 3
bs ~18.9670 - r
b, ~724.6654 203 45T E T TR TS o
bg 1113.7198 Center of Mass Separation (red. units)
be 6055.6064 _ _
b, 7423.4565 FIG. 3. The parametrized van qer Waals fqrce as a functlon of
b 2613.6556 thet§(;aledf(;§ntertof 225434 separation for a pair of,@@htinuum
particles of diameter 2. nm.
by 505.7056
b1o 32.6514
1
relative to the first orientation so the three clusters were in " Lifshitz
the T orientation. The results of these calculations, along w0 N e Discrete-pairwise sum
with the energy between a sphere and set of paired spheres {77 Coupling
calculated according to the Lifshitz theory, are shown in & 10-14
Figs. 4a) and 4b). It is evident that for both orientations, the <«
difference between the discrete energies due to complete = 10724
coupling and partial coupling of the moleculgsferred to as ;?
the coupling energyis orders of magnitude smaller than 3 1073
either one of the discrete energies. This result, combined £
with the observation that the Lifshitz and discrete energy é 10743
have a close correspondence, indicates that, regardless of the % s
orientations of the interacting clusters, the difference made 19773
by calculating the total interaction energy as a sum over the 10-6 .
individual Lifshitz energy E ;) values, as suggested above, 20 40 60 80 100 120
is small. Comparison of the coupling energies in Figs) 4 )
and 4b) shows that for the same center-of-mass separations (@) Center of Mass Separation (A)
the coupling energy for the linear orientation is greater than . . ' . .
that for theT orientation. This observation further corrobo- 10 N
rates the results of Volf22], who demonstrated, based on 0ol L e B‘ifsschr‘etfe_mjrwisesum [
the Hamaker theory, that for a given center-of-mass separa- ~~ ~ § = ----- Coupling
tion, the interaction energy for ellipsoidal particles is largest & 107
for end-to-end orientation of particles. @
?; 10724
1 1 [T ! Lo 1 2
3 E = -3 ]
101_% §r E 10
E 1 g 1077
% 10" L ﬁ
éﬁ 10_3‘% ' 10°®
s 1 3 20
10-5} ;r (b) Center of Mass Separation (A)
10,7-5 — . FIG..4. Thfe interaction energies anq coupling energy t?etween a
2 3 4 5 6 7 8 9 10 contacting pair of CGlclusters and a third cluster if&) the linear

orientation, andb) the T orientation. The coupling energy is the
difference between the interaction energy obtained by coupling all

FIG. 2. The parametrized van der Waals energy as a function afmolecules in the three-cluster system and the energy obtained by
the scaled center-of-mass separation for a pair of,@&htinuum  ignoring the interactions between the molecules in the adhering
particles of diameter 2.544 nm. clusters.

Center of Mass Separation (red. units)



PRE 58 DEVELOPMENT OF A PICTURE OF THE VAN DR . . . 3457

IV. CONCLUSIONS etrization is especially beneficial for molecular dynamics
simulation calculationg23], where the largest part of the

To summarize, we have formulated a method for calcu-

lating the van der Waals energy between complex p(,:Irticlews%;omputatlonal time is spent in the calculations of the inter-

aggregates of spherical particles, from large separatio artic]e e_nergies and force(é%)' It enables the calculation of_

! e Lifshitz—van der Waals interaction energy between ir-
through contact. The method has several advantdgest reqularly shaped aggregates of particles
presents an integrated and internally consistent picture of the '
van der Waals energy from the large separations, where the
collective effects characteristic of condensed matter are im-
portant, to near contact separations, where the molecular ef-
fects become increasingly importaf®) It provides a param- The authors thank Dr. R. R. Lucchese for helpful discus-
etrization of the interaction energy over all separationssions on the parametrization of the interaction potential. This
which can significantly reduce computation time, while re-work was supported by the U.S. Department of Energy under
taining all of the physics of the interactions. Such a paramGrant No. De-FG05-91-ER61207.
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